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Abstract

We analyze a degenerate diffusion equation with singular boundary data, mod-
eling the evolution of a polygenic trait under selection and drift. The equation
models the contributions of a large but finite number of loci (genes) to the trait
and at the same time allows the population trait mean to vary in a way that af-
fects the strength of selection at individual loci; in this respect it differs from other
population-genetic models that have been rigorously analyzed. We present exis-
tence, uniqueness and stability results for solutions of the system. We also prove
that the genetic variance in the system tends to zero in the long time limit, and
relate the dynamics of the trait mean to the variance.

1 Introduction
In population genetics one frequently encounters diffusive partial differential equations
of the form

φt = −(Mφ)x + 1
2 (V φ)xx. (1)

Here x ∈ (0, 1) denotes the frequency of a given allele at a locus (gene), t denotes
time, and φ(x, t) is a distribution indicating how many loci have allele frequency x at
time t. The coefficients M(x, t) and V (x, t) are respectively the mean and variance of
the change in allele frequency over one generation at a locus with frequency x at time
t [8, Chapter 4], [5, chapter 8]. Equations such as (1) are typically posed with initial
data but without boundary conditions.

Here we consider a model for a quantitative trait, i.e,. a continuous random variable
whose value in an individual is generally determined by contributions from numerous
loci (quantitative trait loci, or QTL) as well as non-genetic factors. (Examples of quan-
titative traits include the height of a human or oil content of a corn plant.) In the context
of a quantitative trait, the interpretation of φ in equation (1) is constrained. In general,
φ can be viewed in two ways; either as a distribution of allele frequencies at a single lo-
cus in many populations, or at many loci in one population. However, for QTL models
only the latter interpretation is valid.

Our model describes the evolution of a single panmictic population of fixed sizeN ,
where n diallelic loci (we refer to the alleles as + and −) contribute strictly additively
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to a single trait under selection. This is a mesoscale model in that it explicitly includes
a (large) finite number of loci with finite effect, but does not retain all the information
necessary to track allele frequencies at specific individual loci. Important limitations of
the model are, first, that all loci are assumed to be in linkage equilibrium, and second,
that mating is assumed to be random. In exchange for these simplifications, however,
the model allows the population trait mean to vary in a way that affects the nature of
selection on the trait. This extends previous work on diffusive PDE models of quantita-
tive traits, which did not consider feedback of a changing trait mean on fitness functions
[12].

In the classical models of population genetics [5, 14], the strength of selection at a
locus is assumed to be independent of φ, and as a consequence, both M and V , though
proportional to x(1 − x), are also independent of φ. This process yields a linear,
degenerate parabolic equation. In the more flexible model we present, M depends (via
a fitness function to be defined below) on the population trait mean R(t), which is a
nonlocal function summing contributions from all loci. We then obtain the problem

φt = −(Mφ)x + 1
2 (V φ)xx, (2a)

M = κx(1− x)(ρ−R(t)), (2b)
V = x(1− x), (2c)

R =
[∫ 1

0

(x− 1
2
)φ(x, t) dx+R0(t) +R1(t)

]
, (2d)

R′0 = − 1
4 (V φ)x

∣∣
x=0

, (2e)

R′1 = − 1
4 (V φ)x

∣∣
x=1

, (2f)

φ(·, t) = φ0. (2g)

Here κ represents the strength of selection, and ρ is the optimal trait value. Further,
R0 and R1 represent contributions to the trait mean from loci at which the + allele
has become either fixed (x = 1) or lost (x = 0), while the integral in (2d) represents
contributions from loci at which the + and − alleles are segregating. Because M
depends on R(t), we obtain a nonlinear, nonlocal equation, and because M and V
remain proportional to x(1 − x), the problem remains degenerate. Moreover, we note
that the problem as posed has no boundary conditions at x = 0 or x = 1; rather R(t)
and hence the coefficient M depend on the value of the boundary terms (V φ)x

∣∣
x=0

and (V φ)x

∣∣
x=1

, where the equation degenerates.
Our first main result is the existence, uniqueness, and stability of solutions to a

generalization to (2) where (2b) and (2c) are replaced by

M = x(1− x)m(x, t, R(t)) (2b*)
V = x(1− x)v(x, t, R(t)) (2c*)

with some weak hypotheses on m and v.
Our second main result is an analysis of the behavior of the trait mean R(t) and

(scaled) genetic variance

S2(t) =
∫ 1

0

x(1− x)φ(x, t) dx
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as t → ∞ for the original problem (2). In particular, we show that S2(t) → 0 as
t→∞ in a weak sense, and that S2(t) = O(e−ct) for some c > 0 provided the initial
trait mean R(0) is close to the optimum trait mean ρ. We also show that

R(t)− ρ = (R(0)− ρ) exp
∫ t

0

−κ S2(τ) dτ.

implying that R(t) tends monotonically towards ρ, and if the initial trait mean R(0) is
close to the optimum trait mean ρ that

|R(t)− ρ| ≥ |R(0)− ρ| exp[γS2(0)(e−ct − 1)]

for some c, γ > 0, implying that the larger the intitial genetic variance, the closer the
trait mean can come to the optimum.

In another work [16], we have used formal asymptotics to estimate the long term
behavior of the population trait mean and total additive genetic variance, and have
investigated numerical solutions of the system. We note that the model investigated
numerically in [16] included loci of different effects, i.e. loci that varied in their con-
tributions to the trait. For simplicity, here we assume a single effect size, which we set
equal to 1/n.

In this paper, we begin with a brief derivation of our model, including a discussion
of the underlying biological assumptions. Then we present precise statements of our
existence, uniqueness, and stability results, as well as how they fit into the general
mathematical theory of degenerate parabolic equations. We then develop the theory of
a family of weighted Sobolev spaces that are the natural spaces for energy estimates for
our problem. Proofs of the existence and of the uniqueness and stability results follow.
Finally, we study the long-time asymptotic behavior of the trait mean and variance.

2 The Model
As mentioned above, we consider a panmictic population of N individuals and a trait
made up of strictly additive contributions from n diallelic, haploid loci (environmental
contributions to the trait are ignored). The additive effect of a locus, i.e. the difference
between the mean trait value of individuals carrying the + allele and that of individuals
carrying the − allele, is taken to be a constant independent of the locus; for simplicity
of notation we take that constant to be 1/n (we note, however, that biologically the
additive effect is an important parameter and our model can readily be extended to
incorporate a distribution of effect sizes; see [16]). If xi(t) denotes the percentage of
individuals carrying the + allele at the i-th locus in generation t, then the population
trait mean is (up to an additive constant which we decree to be 0)

R(t) =
n∑

i=1

[
xi

(
1
2n

)
+ (1− xi)

(−1
2n

)]
=

1
n

n∑

i=1

(
xi − 1

2

)

Natural selection is modeled by a relative fitness function f(R), giving the expected
number of offspring of an individual whose trait value is R. We employ a Gaussian
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fitness function:
f(R) = e−κ(R−ρ)2

where ρ is the optimal trait value. Let f+i and R+i = R + 1/(2n) (respectively, f−i

andR−i = R−1/(2n)) denote the mean fitness and the mean phenotype of individuals
with a + (−) allele at locus i. Then the expected proportion pi of + alleles at locus i
in generation t + 1 must be proportional to both Nxi and f+i. Similar considerations
apply to the expected number of − alleles; it follows that

pi =
xif+i

xif+i + (1− xi)f−i
.

Under weak selection and random mating, the approximation

pi ≈ xif(R+i)
xif(R+i) + (1− xi)f(R−i)

(3)

is valid [16]; we will use (3) as our definition of pi. The actual number Nxi(t+ 1) of
+ alleles at locus i in generation t + 1 is then a binomial random variable with mean
Npi(t) and variance Npi(t)(1− pi(t)).

We now introduce a probability distribution φ, such that
∫ b

a
φ(x, t) dt is the per-

centage of loci in a single population having + allele frequencies between a and b at
time t. A formal diffusion approximation (carried out in [16] along the lines of, e.g.,
[8, Chapter 4]) then yields the equation

φt = −(Mφ)x +
1
2
(V φ)xx (4)

for φ on the x-interval (0, 1), with advection and diffusion coefficients M and V given
by

M(x, t) =
2κx(1− x)(ρ−R(t))

n
(5)

V (x, t) =
x(1− x)

N
. (6)

where R(t) is the population trait mean. It is important to note that M and V are
approximations of p − x and p(1 − p)/N respectively, and that the resulting PDE (4)
is expected to represent the corresponding discrete system exactly in the joint limit as
N → ∞ and n → ∞, under the conditions that n ¿ N and that κ = O(n/N) (so
that weak selection is assumed). To complete the derivation we rescale time and the
selection coefficient κ, obtaining (5) and (6).

It remains to derive an expression for R(t) in terms of φ. Such an expression must
include contributions to the trait mean from two types of loci: segregating loci (i.e.
those at which 0 < x < 1 strictly) and loci at which fixation of the + (x = 1) or −
(x = 0) allele has occurred. To to account for these fixed loci, R(t) must include terms
representing mass that has passed out through the boundary of the interval [0, 1]. Thus

R(t) =
∫ 1

0

(x− 1
2
)φ(x, t) dx+R0(t) +R1(t) (7)
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where

R0(t) = −1
4

∫ t

0

(V φ)x(0, s) ds+R0(0) (8)

R1(t) = −1
4

∫ t

0

(V φ)x(1, s) ds+R1(0). (9)

Equations (4)-(9), together with initial values for φ, R0 and R1, complete the specifi-
cation of the model. Note that this system has no boundary conditions.

A more detailed derivation of the model is presented in [16].

3 The Main Results
Our first result is that the problem (4)-(9) has a solution, in a sense to be made precise
below.

To state the result, we first need to introduce a family of Hilbert spaces. They are

B0 =
{
ψ measurable on [0, 1] :

∫ 1

0

x(1− x)ψ2(x) dx <∞
}

with 〈φ, ψ〉B0
=

∫ 1

0
x(1− x)φψ dx,

B1 =
{
ψ ∈ B0 :

∫ 1

0

[x(1− x)ψ(x)]2x dx <∞
}

with 〈φ, ψ〉B1
= 〈φ, ψ〉B0

+
∫ 1

0
[x(1− x)φ]x[x(1− x)ψ]x dx, and

B2 =
{
ψ ∈ B1 :

∫ 1

0

x(1− x) [x(1− x)ψ(x)]2xx dx <∞
}

with 〈φ, ψ〉B2
= 〈φ, ψ〉B1

+
∫ 1

0
x(1− x)[x(1− x)φ]xx[x(1− x)ψ]xx dx.

The structure of the equation makes these the natural setting for the existence the-
ory. Indeed, (5) and (6) imply V = x(1 − x)v and M = x(1 − x)m for functions m
and v that are smooth in x with v > 0. Formally, if we set m = v = 1 to allow us to
ignore lower order terms and then take the inner product of the equation with φ in B0

we obtain the energy estimate

d

dt
‖φ(·, t)‖B0

+ ‖φ(·, t)‖B1
≤ 2 ‖φ(·, t)‖B0

‖φ(·, t)‖B1

while if we multiply by x(1− x)[x(1− x)φ]xx and integrate, we obtain

d

dt
‖φ(·, t)‖B1

+ ‖φ(·, t)‖B2
≤ 2 ‖φ(·, t)‖B1

‖φ(·, t)‖B2
.

Let us now state precisely our existence theorem.
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Theorem 1 Let φ0 ∈ B1 be given with φ0 ≥ 0, let R0(0) and R1(0) be given, and let
T > 0. Let M(x, t, R) = x(1 − x)m(x, t, R) and V (x, t, R) = x(1 − x)v(x, t, R)
satisfy the conditions:

(H1) The functions (x, t, R) 7→ m(x, t, R) and (x, t, R) 7→ v(x, r,R) are continuous
for 0 ≤ x ≤ 1, t ≥ 0, −∞ < R <∞;

(H2) For any γ > 0, there exist constants C(γ), C ′(γ) > 0 so that for all 0 ≤ x ≤ 1,
all t > 0 and all |R| ≤ γ

v(x, t, R) ≥ C ′(γ),
|v|+ |vx|+ |vxx|+ |m|+ |mx| ≤ C(γ),

|mR|+ |vR|+ |vRx| ≤ C(γ);

(H3) There are integrable functions M1(t) and M2(t) so that

sup
0≤x≤1

|M(x, t, R)| ≤ M1(t) +M2(t)|R|.

Then there exists a function

φ ∈ C([0, T );B1) ∩ L2(0, T ;B2) ∩ Cα([0, T );Lp(0, 1)) ∩ C((0, 1)× [0, T ))

for any 1 ≤ p < 2, for any 0 < α < 1
p − 1

2 ; and functions

R0, R1 ∈ Cβ [0, T );

for any 0 < β < 1
2 with the following properties.

Set

R(t) =
∫ 1

0

(x− 1
2 )φ(x, t) dx+R0(t) +R1(t).

Then R ∈ C1[0, T ).
Further,

φt = −(M(x, t, R(t))φ)x + 1
2 (V (x, t, R(t))φ)xx

as elements of L2(0, T ;B0) and

lim
t↓0

φ(x, t) = φ0(x)

with the limit taken strongly in B1.
Set

ν(x, t) =
∫ t

0

(V (x, t, R(t))φ)x(x, s) ds

Then ν ∈ Cα([0, T );C1− 1
p [0, 1]) for any 1 ≤ p < 2 and any 0 < α < 1

p − 1
2 . Further

R0(t) = R0(0)− 1
4ν(0, t),

R1(t) = R1(0)− 1
4ν(1, t).
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There is a constant C depending only on T and initial data so that

sup
0≤t<T

‖φ(·, t)‖B0
+ ‖φ‖L2(0,T ;B1)

≤ C ‖φ0‖B0
,

‖φ‖C1/2([0,T );B0)
≤ C ‖φ0‖B1

,

sup
0≤t<T

‖φ(·, t)‖B1
+ ‖φ‖L2(0,T ;B2)

≤ C ‖φ0‖B1
.

For all x ∈ (0, 1) we have

sup
0≤t<T

|φ(x, t)| ≤ Cmax
(

1√
x
,

1√
1− x

)
‖φ0‖B1

.

For any 1 ≤ p < 2 and any 0 < α < 1
p − 1

2

‖φ‖Cα([0,T );Lp(0,1)) ≤ C ‖φ0‖B1
,

‖ν‖Cα([0,T );C1−1/p[0,1]) ≤ C ‖φ0‖B1
.

where C also depends on p and α. Further, for any 0 < β < 1
2 ,

‖R0‖Cβ [0,1] + ‖R1‖Cβ [0,1] ≤ C ‖φ0‖B1
.

where C also depends on β.
Moreover, φ ≥ 0, and for any 0 ≤ t1 < t2 < T

∫ 1

0

φ(x, t2) dx ≤
∫ 1

0

φ(x, t1) dx.

Finally

|R(t)| ≤
[
|R(0)|+ ‖φ0‖L1(0,1)

∫ t

0

M1(s) ds
]

exp
[
‖φ0‖L1(0,1)

∫ t

0

M2(s) ds
]

and

R(t2)−R(t1) =
∫ t2

t1

∫ 1

0

M(x, t, R(t))φ dx dt. (10)

for any 0 ≤ t1 < t2 < T .

We now briefly sketch the proof. We first develop the theory of the B0, B1 and B2

spaces, which, as we remarked above, are the natural settings for our energy estimates.
They also contain information about the boundary data; indeed ψ ∈ B1 implies that

x(1−x)ψ ∈
◦
W 1

2(0, 1). Next we freeze the coefficients M and V at φ̃ ∈ C([0, T );L1)
and R̃0, R̃1 ∈ C[0, T ). Application of Galerkin’s method and the energy estimates
allow us to uniquely solve the problem

{
φt = −(Mφ)x + 1

2 (V φ)xx,

φ
∣∣
t=0

= φ0.
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The full problem is nonlinear and nonlocal as the coefficients M and V depend
on R(t) =

∫ t

0
(x − 1

2 )φ dx + R0(t) + R1(t) where R′0 = − 1
4 (V φ)x

∣∣
x=0

and R′1 =
− 1

4 (V φ)x

∣∣
x=1

The energy estimates suffice to control the integral, but are inadequate
to control the boundary terms. In fact the energy estimates alone are insufficient to
even ensure the existence of (V φ)x

∣∣
x=0

or (V φ)x

∣∣
x=1

However, the equation provides
enough additional information. Indeed, the function ν(x, t) =

∫ t

0
(V φ)xds satisfies the

relation
∂ν

∂x
(x, t) = 2

∫ t

0

(Mφ)x ds+ 2[φ(x, t)− φ0(x)]

which can formally be seen by integrating the equation. We estimate the right side and
obtain enough regularity to define ν(0, t) and ν(1, t), which we then use to control R0

and R1.
The energy estimates depend on φ̃ and R̃0, R̃1 through the quantity γ = max |R̃(t)|.

To show that the full nonlinear problem has a solution, we find a uniform bound on
max |R(t)| that is independent of γ. To do so, we prove that

∫ 1

0
φ±(x, t2) dx ≤∫ 1

0
φ±(x, t1) dx whenever t2 ≤ t1, which is effectively a weak maximum principle.

This is done by using a regularized version of χ[φ± > 0] as a test function. A fixed
point argument completes the proof.

We are also able to provide the following uniqueness and stability result.

Theorem 2 Let φ, φ∗ ∈ C([0, T ];B1) ∩ L2(0, T ;B2) and R0, R
∗
0, R1, R

∗
1 ∈ C[0, T ].

Let

R(t) =
∫ 1

0

(x− 1
2 )φ(x, t)+R0(t)+R1(t), R∗(t) =

∫ 1

0

(x− 1
2 )φ∗(x, t)+R∗0(t)+R

∗
1(t)

and let M = M(x, t, R(t), M∗ = M(x, t, R∗(t), V = V (x, t, R(t)), and V ∗ =
V (x, t, R∗(t)). Suppose that

φt = −(Mφ)x + 1
2 (V φ)xx, φ∗t = −(M∗φ∗)x + 1

2 (V ∗φ∗)xx,

φ
∣∣
t=0

= φ0 ∈ B1, φ∗
∣∣
t=0

= φ∗0 ∈ B1,

R(t)−R(0) =
∫ t

0

∫ 1

0

Mφ dx dt, R∗(t)−R∗(0) =
∫ t

0

∫ 1

0

M∗φ∗ dx dt.

Then

1. If φ0 = φ∗0 and R0(0)−R1(0) = R∗0(0)−R∗1(0) then φ = φ∗.

2. There is a constant C depending only on initial data and T so that

sup
0≤t≤T

∫ 1

0

x(1− x)(φ− φ∗)2 dx
∣∣∣
t

+
∫ T

0

∫ 1

0

[x(1− x)(φ− φ∗)]2x dx dt

≤ C

∫ 1

0

x(1− x)(φ0 − φ∗0)
2 dx+ C

∫ 1

0

[x(1− x)(φ0 − φ∗0)]
2
x

+ C|R0(0)−R1(0)−R∗0(0) +R∗1(0)|2.

8



In the uniqueness and stability result, we have encoded the conditions

R0(t) = −1
4

∫ t

0

(V φ)x(0, s) ds+R0(0) (11a)

R1(t) = −1
4

∫ t

0

(V φ)x(1, s) ds+R1(0) (11b)

with the requirement

R(t)−R(0) =
∫ t

0

∫ 1

0

Mφ dx ds. (12)

This is justified by (10) and Lemma 19. Formally, if we use (x− 1
2 ) as a test function,

we find
∫ t

0

∫ 1

0

φt(x− 1
2 ) dx ds = −

∫ t

0

∫ 1

0

{(Mφ)x(x− 1
2 ) + 1

2 (V φ)xx(x− 1
2 )} dx ds

∫ 1

0

(x− 1
2 )φ dx

∣∣∣
t

0
=

∫ t

0

∫ 1

0

Mφ dx ds+
1
2

∫ t

0

(V φ)x(x− 1
2 ) ds

∣∣∣
x=1

x=0

so (formally) (11) implies (12).
To sketch the proof, we note that the structure of M and V allows us to estimate

M − M∗ and V − V ∗ in terms of R − R∗. Then (12) lets us estimate R − R∗ in
terms of φ − φ∗ and M − M∗. Closing the circle gives us estimates for M − M∗

and V − V ∗ in terms of φ − φ∗, which we can then use in the equation; Gronwall’s
inequality completes the proof.

We note that a large body of work on degenerate parabolic and elliptic systems ex-
ists, mostly based either on methods adapted from the study of nondegenerate systems
or on semigroup methods (but see also [19, 20]). Classical results based on tools such
as maximum principles are surveyed for nondegenerate systems in [15] and for degen-
erate systems in [17]. Among results in this vein, we note that Ivanov [13] proved
existence in weighted Sobolev spaces to linear systems on [0, 1] with a degeneracy as
x → 0+ of order xr and a similar degeneracy as x → 1−; however, these results used
r < 1 strictly. Semigroup methods have the advantage of providing results in L1-based
spaces; for example, in [2] existence in L1- and other Lp-based spaces is shown for
solutions of the initial value problem for ut = (a(x)ux)x− b(x)u with a singular Neu-
mann boundary condition. This and similar results (see for example [9]) are based in
linear semigroup theory and hence are not immediately applicable to the problem stud-
ied here; it would be of interest to know whether nonlinear semigroup theory would
yield analogous results.

Now we restrict our attention to our particular model; we can then prove the fol-
lowing result on the asymptotic behavior of the trait mean and total genetic variance.

Theorem 3 Suppose that V = x(1 − x) and M = κx(1 − x)(ρ − R(t)), and let
S2(t) =

∫ 1

0
x(1− x)φ(x, t) dx. Then

• S2 ∈ L1(0,∞) and
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• R(t)− ρ = (R0 − ρ) exp
∫ t

0

−κ S2(τ) dτ .

Further, if there is a constant 0 < δ < 1 so that |R0 − ρ| ≤ δ/κ then

• S2(t) ≤ S2(0)e−(1−δ)t and

• |R(t)− ρ| ≥ |R0 − ρ| exp
{
S2(0)

κ

1− δ

(
e−(1−δ)t − 1

)}

for any t > 0.

The key element in the proof is the expression (10), which in the particular case gener-
ates a linear differential equation for R(t) − ρ which can be solved. Taking the inner
product of the original equation with 1 in B0 and using the particular forms for M and
V , together with the expression for R(t)− ρ just found, completes the proof.

We note that in what follows, the symbols N and n will be used for a variety of
purposes; when this occurs it will be clear that they do not represent population size or
locus number, but are simply indices.

4 Properties of B0, B1, and B2

We begin the proof by collecting the necessary theory for the spaces B0, B1, and B2.

Lemma 4 C∞0 (0, 1) is dense in B0.

This follows immediately from the fact that if φ ∈ B0 then the cutoff functions
φχ[a<x<b] are in L2(0, 1) for any 0 < a < b < 1.

Lemma 5 If φ ∈ B1, then x(1 − x)φ ∈
◦
W 1

2(0, 1). Further φ has a continuous
representative with x(1− x)φ ∈ C1/2[0, 1] so that

|x1(1− x1)φ(x1)− x2(1− x2)φ(x2)| ≤ |x2 − x1|1/2

(∫ 1

0

[x(1− x)φ(x)]2x dx
)1/2

.

Proof: Let φ ∈ B1; clearly x(1−x)φ ∈W 1
2 (0, 1). We claim that for all ε > 0 and

for all y > 0, there exists k > 0 so that k < y and

meas{x ∈ (0, k) : |x(1− x)φ(x)| ≥ ε} ≤ 1
3
k.

Indeed, for any 0 < k < 1/2 and any δ > 0, we have
∫ k

0

x(1− x)φ2(x) dx ≥ 1
2δ

2

∫ k

0

xχ[|φ| ≥ δ] dx.

If E is a measurable set, and f(x) is measurable, bounded, nonnegative, and nonde-
creasing, them ∫ 1

0

f(x)χE dx ≥
∫ meas E

0

f(x) dx.
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Indeed, this clearly holds if E is an open interval; induction then shows it holds for any
countable union of open intervals and hence for any open set. Because it holds for any
open set, it must hold for any measurable set. As a consequence

∫ k

0

x(1− x)φ2(x) dx ≥ 1
2δ

2

∫ meas(0,k)[|φ|≥δ]

0

x dx ≥ δ2

4

(
meas
(0,k)

[|φ| ≥ δ]
)2

.

Choose k so small that
∫ k

0
x(1− x)φ2(x) dx ≤ ε2/36, and set δ = ε/k. Then

meas
(0,k)

[|φ| ≥ ε/k] ≤ ε

3ε/k
=
k

3
.

Because

{x ∈ (0, k) : |x(1− x)φ(x)| ≥ ε} ⊂ {x ∈ (0, k) : |φ(x)| ≥ ε/k}

the claim follows.
Let ε > 0, and use the claim to choose k ≤ 1 so that

k ≤ ε2

64 ‖φ‖2B1

(13)

and
meas{x ∈ (0, k) : |x(1− x)φ(x)| ≥ ε

4} ≤ k
3 .

Let A = {x ∈ (0, k) : |x(1 − x)φ(x)| < ε
4}; then measA ≥ 2k/3. Choose ψ ∈

C1[0, 1] so that
‖ψ − x(1− x)φ‖W 1

2
≤ 1

8ε
√
k. (14)

Let x ∈ (0, k) and y ∈ A. Then

ψ(x) = ψ(y) +
∫ x

y

ψ′(s) ds

Integrating in y over A, and integrating in x over (0, k), we find that

(measA)
∫ k

0

ψ(x) dx = k

∫

A

ψ(y) dy +
∫

A

∫ k

0

∫ x

y

ψ′(s) ds dx dy.

so that Hölder’s inequality implies

∣∣∣∣∣
∫ k

0

ψ(x) dx

∣∣∣∣∣ ≤
k√

measA

(∫

A

|ψ(x)|2 dx
)1/2

+ k3/2

(∫ k

0

|ψ′(x)|2 dx
)1/2

.

Now let x ∈ (0, 1). Then

ψ(0) = ψ(x)−
∫ x

0

ψ′(y) dy

11



so that if we integrate in x over (0, k), we see that

|ψ(0)| ≤ 1
k

∣∣∣∣∣
∫ k

0

ψ(x) dx

∣∣∣∣∣ +
1
k

∣∣∣∣∣
∫ k

0

∫ x

0

ψ′(y) dy dx

∣∣∣∣∣

≤ 1√
measA

(∫

A

|ψ(x)|2 dx
)1/2

+ 2
√
k

(∫ k

0

|ψ′(x)|2 dx
)1/2

.

Thus

|ψ(0)| ≤ 1√
measA

{(∫

A

|x(1− x)φ(x)|2 dx
)1/2

+ ‖ψ − x(1− x)φ‖L2(0,k)

}

+ 2
√
k

{
‖[x(1− x)φ]x‖L2(0,k) + ‖[ψ − x(1− x)φ]x‖L2(0,k)

}
.

Now using (13), (14), and the definition of A, we determine that

|ψ(0)| ≤ 1√
measA

{(
ε2

16
measA

)1/2

+
ε

8

√
k

}
+ 2

√
k

{
ε

8
√
k

+
ε

8

√
k

}
.

Then because k < 1 and k ≤ 3
2 measA, we see that

|ψ(0)| ≤ ε
4 + ε

8

√
3
2 + ε

4 + ε
4 < ε.

A similar argument shows that |ψ(1)| ≤ ε.
Thus, for all ε > 0, we can find a function ψ ∈ C1[0, 1] so that |ψ(0)|, |ψ(1)| < ε

and ‖ψ − x(1− x)φ‖W 1
2
< ε, proving that x(1− x) ∈

◦
W 1

2(0, 1)
The rest follows from the usual Sobolev embedding results [6, IX.8]. ¥

Corollary 6 Let φ ∈ B1. Then

sup
x∈[0,1]

x(1− x)φ2(x) ≤ 2
∫ 1

0

[x(1− x)φ]2x dy

while for any 0 < x < 1

|φ(x)| ≤ 2max
(

1√
x
,

1√
1− x

)
‖φ‖B1

.

Further, for any 1 ≤ p < 2, there exists a constant C = C(p) so that

‖φ‖Lp
≤ C ‖φ‖B1

.

Proof: These follow by applying the previous with x1 = x and x2 = 0 if x ≤ 1/2
while x2 = 1 if x ≥ 1/2. ¥

Lemma 7 C∞0 (0, 1) is dense in B1.

12



Proof: Let φ ∈ B1, and let ε > 0. Then x(1 − x)φ(x) ∈
◦
W 1

2(0, 1). Choose
ψ̃ ∈ C∞0 (0, 1) so that

∥∥∥ψ̃ − x(1− x)φ
∥∥∥

W 1
2

< ε√
3

and set ψ = 1
x(1−x) ψ̃. Because

ψ̃ ∈ C∞0 (0, 1), we see that ψ ∈ B1, and hence by Corollary 6

sup
0≤x≤1

x(1− x)[φ− ψ]2 ≤ 2
∫ 1

0

[x(1− x)(φ− ψ)]2x dx.

Thus

‖φ− ψ‖2B1
≤ 3

∫ 1

0

[ψ̃ − x(1− x)φ]2x dx ≤ ε2

as required. ¥
Now suppose that φ ∈ B2. Then clearly x(1 − x)φ(x) ∈

◦
W 1

2(0, 1) ∩W 2
2,loc(0, 1)

[6, IX.8] so that φ ∈ C3/2
loc (0, 1). Let

G(x, y) =

{
x(y − 1) x ≤ y

(x− 1)y x ≥ y

be the Green’s function for the problem ψ′′ = 0, ψ(0) = ψ(1) = 0 [4, Chp. 7]. Then

φ(x) =
1

x(1− x)

∫ 1

0

G(x, y)[y(1− y)φ]yy dy. (15)

Indeed, letting I(x) denote the integral on the right, we see that

|I(x)| ≤
(∫ x

0

(1− x)y dy
)1/2 (∫ x

0

(1− y)y[y(1− y)φ]2yy dy

)1/2

+
(∫ 1

x

x(1− y) dy
)1/2 (∫ 1

x

y(1− y)[y(1− y)φ]2yy dy

)1/2

≤ x(1− x)√
2

(
1√
x

+
1√

1− x

)(∫ 1

0

y(1− y)[y(1− y)φ]2yy dy

)1/2

and

|I ′(x)| ≤
(∫ x

0

y

1− y
dy

)1/2 (∫ x

0

(1− y)y[y(1− y)φ]2yy dy

)1/2

+
(∫ 1

x

1− y

y
dy

)1/2 (∫ 1

x

y(1− y)[y(1− y)φ]2yy dy

)1/2

≤
[(

ln
1
x

)1/2

+
(

ln
1

1− x

)1/2
] (∫ 1

0

y(1− y)[y(1− y)φ]2yy dy

)1/2

while I ′′(x) = [x(1− x)φ]xx for 0 < x < 1. Since I(0) = 0 = [x(1− x)φ]
∣∣
x=0

and
I(1) = 0 = [x(1−x)φ]

∣∣
x=1

, a simple uniqueness argument implies I(x) = x(1−x)φ,
giving us (15).

13



Lemma 8 Let φ ∈ B2. Then φ ∈ C3/2
loc (0, 1), and

∫ 1

0

x(1− x)φ2 dx ≤ 2
∫ 1

0

x(1− x)[x(1− x)φ]2xx dx

∫ 1

0

[x(1− x)φ]2x ≤ 8
∫ 1

0

x(1− x)[x(1− x)φ]2xx dx

This follows immediately from our estimates of I(x) and I ′(x) above.

Lemma 9 C∞[0, 1] is dense in B2.

Proof: Let φ ∈ B2, and let ε > 0. Since
√
x(1− x)[x(1− x)φ]xx ∈ L2(0, 1), we

can choose g ∈ C∞0 (0, 1) so that
∥∥∥g −

√
x(1− x)[x(1− x)φ]xx

∥∥∥
L2

< ε/(1 + 3
√

2).

Set

f(x) =
1

x(1− x)

∫ 1

0

G(x, y)g(y) dy

=
1
x

∫ x

0

yg(y) dy +
1

1− x

∫ 1

x

(1− y)g(y) dy.

Clearly f ∈ C∞[0, 1] because g vanishes near x = 0 and x = 1; then applying Lemma
8, we see that

‖f − φ‖B2
≤ (3

√
2 + 1)

(∫ 1

0

x(1− x)[x(1− x)(f − φ)]2xx dx

)1/2

≤ ε.

¥
Remark: Because of the density of C∞[0, 1] in B2 and of C∞0 [0, 1] in B1 then we

can justify the following integration by parts

∫ 1

0

x(1− x)φ[x(1− x)ψ]xx dx = −
∫ 1

0

[x(1− x)φ]x[x(1− x)ψ]x dx.

for any φ ∈ B1 and ψ ∈ B2, which we use repeatedly in what follows.
Remark: It is easy to check that the monomials f(x) = xp are elements of B0 if

p > −1, elements of B1 if p > −1/2, and elements of B2 if p > 0. This suggests that
it might be possible to generalize Lemma 5, and if φ ∈ B2, then [x(1− x)φ]x → 0 as
x ↓ 0 or x ↑ 1. However, this is not the case. Indeed, let ζ ∈ C∞[0, 1] be a smooth
cutoff function with ζ(x) = 1 for x ∈ [0, 1

3 ], and ζ(x) = 0 for x ∈ [ 23 , 1]. Then for
0 < p < 1/2, the function

f(x) =
ζ(x)

x(1− x)
Γ(p+ 1,− lnx).

is an element ofB2, but limx↓0[x(1−x)f(x)]x = +∞. Here Γ(a, x) =
∫∞

x
ta−1e−tdt

is the incomplete gamma function [1, §6.5.3]
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Lemma 10 The embeddings B1 ↪→ B0 and B1 ↪→ Lp(0, 1) for 1 ≤ p < 2 are
compact.

Proof: Let {φn}∞n=1 be a sequence in B1 with ‖φn‖B1
≤ C. The set {x(1 −

x)φn}∞n=1 is equicontinuous and equibounded (Lemma 5), so modulo a subsequence,
we see that

x(1− x)φnj
(x) −→ x(1− x)φ(x)

uniformly on [0, 1]. Because B1 is a Hilbert space, φnj ⇀ φ weakly in B1, modulo a
second subsequence; as a consequence, ‖φ‖B1

≤ C.

To prove that B1 ↪→ B0 is compact, let ε > 0, let 0 < δ < ε2

64C2 , and choose N so
large that

|x(1− x)φnj
(x)− x(1− x)φ(x)| ≤ ε√

4 ln
(

1
δ − 1

)

for all nj > N and for all x. Then

∥∥φnj − φ
∥∥2

B0
=

∫ δ

0

x(1− x)(φnj − φ)2 dx+
∫ 1−δ

δ

x(1− x)(φnj − φ)2 dx

+
∫ 1

1−δ

x(1− x)(φnj − φ)2 dx.

Use Corollary 6 to estimate the first and last term; then for nj > N

∥∥φnj − φ
∥∥2

B0
≤ 4δ

[
4

∥∥φnj

∥∥2

B1
+ 4 ‖φ‖2B1

]
+

∫ 1−δ

δ

[x(1− x)(φnj − φ)]2
dx

x(1− x)

≤ 32δC2 +
ε2

4 ln( 1
δ − 1)

∫ 1−δ

δ

(
1
x

+
1

1− x

)
dx ≤ ε2.

Thus φn → φ in B0.
To prove that B1 is compact in Lp(0, 1), let ε > 0, let 0 < δ < 1

2 satisfy

δ <

(
2− p

8(4C)p
εp

)2/(2−p)

and for 1 < p < 2, choose N so large that

|x(1− x)φnj (x)− x(1− x)φ(x)| < ε

(
p− 1
2p+2

δp−1

)1/p

(16)

while for p = 1 choose N so large that

|x(1− x)φnj (x)− x(1− x)φ(x)| < ε

4 ln
(

1−δ
δ

) (17)

for all nj > N and for all x. Corollary 6 and the definition of δ then shows
∫ δ

0

|φnj − φ|p dx+
∫ 1

1−δ

|φnj − φ|p dx ≤ 4(4C)p

2− p
δ1−p/2 ≤ εp

2
.
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On the other hand if 1 < p < 2 we can use (16) to find that
∫ 1−δ

δ

|φnj (x)− φ(x)|p dx ≤ p− 1
2p+2

δp−1εp
∫ 1−δ

δ

dx

xp(1− x)p
≤ εp

2

while if p = 1 we use (17) to obtain
∫ 1−δ

δ

|φnj
(x)− φ(x)| dx ≤ ε

4 ln
(

1−δ
δ

)
∫ 1−δ

δ

(
1
x

+
1

1− x

)
dx ≤ ε

2

Hence
∥∥φnj

− φ
∥∥p

Lp
≤ εp and φn → φ in Lp(0, 1). ¥

Lemma 11 There exists an nondecreasing sequence of nonnegative eigenvalues λk →
∞ and eigenfunctions φk ∈ B2 so that −[x(1 − x)φk]′′ = λkφk. Further, the set
{φk}∞k=1 is an orthonormal basis for B0, and forms a basis for B1.

Proof (sketch): This result can be proven using standard techniques c.f. [7, §6.5]
or [11, §8.12]. Indeed, for φ ∈ B1, consider the Rayleigh quotient

J(φ) =

∫ 1

0
[x(1− x)φ(x)]2x dx∫ 1

0
x(1− x)φ2 dx

.

Then λ1 = inf{J(φ) : φ ∈ B1}. We can choose a minimizing sequence ψk ∈ B1,
‖φk‖B0

= 1, J(ψk) ↓ λ1 and use the compactness B1 ↪→ B0 to show that there is a
function φ1 so that ψk → φ1 in B0 and ψk ⇀ φ1 weakly in B1. Then J(φ1) = λ1

and −[x(1 − x)φ1]′′ = λ1φ1, so φ1 ∈ B2. Subsequent eigenvectors and eigenvalues
are found inductively, with λj = inf{J(φ) : φ ∈ B1, 〈φ, φm〉B0

= 0, for 1 ≤ m < j}.
If λn ≤ C for all n, we can use the fact that ‖φn‖2B1

= 1 + λn to find a subsequence
nj and a function φ ∈ B1 with φnj → φ in B0 and φnj ⇀ φ weakly in B1. However
‖φm − φn‖2B0

= 2 for any eigenfunctions φm and φn, so λn → ∞. Completeness in
B0 follows in the usual way. Indeed, if ψ ∈ B1 let ψn = ψ−∑n

j=1 〈ψ, φj〉B0
φj . Then

J(ψn) ≥ λn+1 so that λn+1 ‖ψn‖2B0
≤ ∫ 1

0
[x(1 − x)ψn]2x dx ≤

∫ 1

0
[x(1 − x)ψn]2x dx

so that ψn → 0 in B0. If ψ ∈ B0 \ B1 we use the fact that C∞0 [0, 1] ⊂ B1 is dense
in B0. Finally, to show that the eigenfunctions are dense in B1, it is sufficient to note
that 〈φ, φk〉B1

= (1 + λk) 〈φ, φk〉B0
for any φ ∈ B1 and any eigenfunction φk. If

φ ∈ B1 was orthogonal in B1 to every eigenfunction, then φ would be orthogonal to
every eigenfunction in B0 which we have already shown to be impossible. ¥.

Remark: The eigenfunctions are polynomials, and the eigenvalues and eigenfunc-
tions can be explicitly computed; in fact λn = 2 +n(n+ 3) and the eigenfunctions φn

are proportional to C(3/2)
n (2x − 1) where C(3/2)

n (x) are Gegenbauer polynomials [1,
§22].

5 The approximating problems
As we noted, our problem is nonlinear and nonlocal because the coefficients M and
V depend depend on the solution φ through R(t) =

∫ 1

0
(x− 1

2 )φ dx+ R0(t) + R1(t)
where R′0 = (V φ)x

∣∣
x=0

and R′1 = (V φ)x

∣∣
x=1

(in a suitable weak sense).
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We begin by letting T > 0, and choosing

φ̃ ∈ C([0, T );L1(0, 1)),

R̃0, R̃1 ∈ C[0, T ).

We then define

R̃(t) =
∫ 1

0

(
x− 1

2

)
φ̃(x, t) dx+ R̃0(t) + R̃1(t)

and consider the approximating problem

φt = −(M(x, t, R̃(t))φ(x, t))x + 1
2 (V (x, t, R̃(t))φ(x, t))xx

φ
∣∣
t=0

= φ0(x).

The smoothness of φ̃, R̃0, and R̃1 imply that there is a constant γ so that

|R̃(t)| ≤ γ (18)

on [0, T ). It also implies that the functions

t 7→M(x, t, R̃(t)) (19)

t 7→ V (x, t, R̃(t)) (20)

are continuous.
Throughout this section we will use the notation M = M(x, t, R̃(t)) and V =

V (x, t, R̃(t)).

Proposition 12 Let T > 0, and suppose that ‖φ0‖B0
<∞. Then there exists a unique

function φ ∈ C([0, T );B0) ∩ L2(0, T ;B1) so that

φt = −(Mφ)x + 1
2 (V φ)xx weakly (21)

φ
∣∣
t=0

= φ0(x). (22)

Moreover

sup
0≤t≤T

∫ 1

0

x(1− x)φ2 dx+
∫ T

0

∫ 1

0

[x(1− x)φ]2x dx dt ≤ C ‖φ0‖2B0
(23)

where C depends only on γ and T .
Further, if ‖φ0‖B1

<∞, then φ ∈ C([0, T );B1) ∩ L2(0, T ;B2) and

sup
0≤t≤T

∫ 1

0

[x(1−x)φ]2x dx+
∫ T

0

∫ 1

0

x(1−x)[x(1−x)φ]2xx dxdt ≤ C ‖φ0‖2B1
(24)

where again C depends only on γ and T .
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Remark: No boundary conditions are being applied to the problem, save through
the requirement that φ ∈ L2(0, T ;B1).

Proof (sketch): This follows the usual Galerkin procedure. Indeed, suppose that
‖φ0‖B0

<∞ and let {φk} be the orthonormal basis of B0 constructed previously. De-
fine φN (x, t) =

∑N
k=1 c

N
k (t)φk(x) where the coefficients cNk (t) are chosen to satisfy

∫ 1

0

x(1− x)
∂φN

∂t
φj dx = −

∫ 1

0

(MφN )xx(1− x)φj dx

− 1
2

∫ 1

0

(V φN )x[x(1− x)φj ]x dx
(25)

cNj (0) = 〈φ0(·), φj〉B0
(26)

for each 1 ≤ j ≤ N . Continuity of the coefficients ensures that this system of ordinary
differential equations has a solution. Multiplying by cNj , summing over j, and strongly
using the fact thatm(x, t, R̃(t)) and v(x, t, R̃(t)) are smooth in x and can be estimated
solely in terms of γ, we obtain

d

dt

∫ 1

0

x(1− x)(φN )2 dx+
∫ 1

0

[x(1− x)φN ]2x dx

≤ C

∫ 1

0

[x(1− x)]2(φN )2 dx ≤ C

∫ 1

0

x(1− x)(φN )2 dx

for each t, where C depends only on γ. Gronwall’s inequality then gives us (23), at
least for φN .

The existence, uniqueness, and continuity of φ with values in B0 then follows by
standard methods; see [15, Chp. III, §4].

If we now assume that ‖φ0‖B1
<∞, then multiplying (25) by λjc

N
j and summing,

we find that
∫ 1

0

x(1−x)∂φ
N

∂t
[x(1−x)φN ]xx dx = −

∫ 1

0

(MφN )xx(1−x)[x(1−x)φN ]xx dx

+
1
2

∫ 1

0

(V φN )xxx(1− x)[x(1− x)φN ]xx dx.

Integrating by parts in the first term and using the fact thatm(x, t, R̃(t)) and v(x, t, R̃(t))
are smooth in x, we obtain

∂

∂t

∫ 1

0

[x(1− x)φN ]2x dx+
∫ 1

0

x(1− x)[x(1− x)φN ]2xx dx

≤ C

∫ 1

0

[x(1− x)φN ]2x dx+ C

∫ 1

0

x(1− x)(φN )2 dx.

and so Gronwall’s inequality gives us (24), at least for φN . The usual techniques for
passage to the limit give us our result. ¥

The following is a simple consequence of the existence theorem and the properties
of the spaces B1 and B2.
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Corollary 13 x(1− x)φ ∈ C([0, T );C1/2[0, 1]), φ ∈ Cloc((0, 1)× [0, T )), and φt ∈
L2(0, T ;B0). Further, there is a constant C depending only on γ and T so that

sup
0≤t<T

|φ(x, t)| ≤ Cmax
(

1√
x
,

1√
x− 1

)
‖φ0‖B1

and for any 1 ≤ p < 2 there is a constant C depending only on γ, T and p so that

sup
0≤t<T

‖φ(·, t)‖Lp(0,1) ≤ C ‖φ0‖B1
.

Indeed, this follows from Lemma 5, Corollary 6, and the equation itself.
We need to understand the behavior of the solution near x = 0 and x = 1; in

particular to interpret (8)-(9) even weakly, we need to be able to estimate (V φ)x

∣∣
x=0

and (V φ)x

∣∣
x=1

. However the regularity theory developed thus far is insufficient to
show that these quantities exist, even in the sense of traces. In particular, we know that
there exist functions f ∈ B2 so that [x(1− x)f ]x is infinite when x = 0. Fortunately,
the equation will provide just enough additional information to allow us to interpret
(V φ)x when x = 0 and x = 1.

To do so, we begin by obtaining precise quantitative bounds on the regularity of the
solution in time.

Lemma 14 Let φ be the solution of Proposition 12. Then φ ∈ C1/2([0, T );B0) and
there is a constant C = C(γ, T ) so that

‖φ(·, t2)− φ(·, t1)‖B0
≤ C|t2 − t1|1/2 ‖φ0‖B1

for any 0 ≤ t1 < t2 < T .

Proof: Since φ ∈ C([0, T );B0) and φt ∈ L2(0, T ;B0), we know that
∫ 1

0

x(1−x)[φ(x, t2)−φ(x, t1)]ψdx =
∫ t2

t1

∫ 1

0

{−(Mφ)x+ 1
2 (V φ)xx}x(1−x)ψdxdt

for any ψ ∈ B0 and any 0 ≤ t1 < t2 < T . Setting ψ(x) = [φ(x, t2) − φ(x, t1)] and
using (23) and (24), we find

‖φ(·, t2)− φ(·, t1)‖2B0
≤

(∫ t2

t1

∫ 1

0

[mx(1− x)φ]2x dx dt

)1/2

·
(∫ t2

t1

∫ 1

0

x(1− x)[φ(x, t2)− φ(x, t1)]2 dx dt
)1/2

+
(∫ t2

t1

∫ 1

0

[vx(1− x)φ]2x dx dt

)1/2

·
(∫ t2

t1

∫ 1

0

[x(1− x)(φ(x, t2)− φ(x, t1))]2x dx dt
)1/2

≤ C|t2 − t1| ‖φ0‖2B1
.

¥
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Lemma 15 Let φ be the solution of Proposition 12. Then φ ∈ Cα([0, T );Lp) for any
1 ≤ p < 2, and any 0 < α < 1

p − 1
2 . Further, there is a constant C = C(γ, T, α, p) so

that
‖φ(·, t2)− φ(·, t1)‖Lp

≤ C|t2 − t1|α ‖φ0‖B1

for all 0 ≤ t1 < t2 < T .

Proof: Let 0 < α < 1
p − 1

2 , and let 0 ≤ t1 < t2 < T .

∫ 1/2

0

|φ(x, t2)− φ(x, t1)|p dx

≤ C sup
0≤x≤1/2

|x(1− x)φ2(x, t2) + x(1− x)φ2(x, t1)|p(1−2α)/2

·
∫ 1/2

0

|φ(x, t2)− φ(x, t1)|2pαx−p(1−2α)/2 dx.

Apply Corollary 13 to the first factor and Hölder’s inequality to the second to find that

∫ 1/2

0

|φ(x, t2)− φ(x, t1)|p dx

≤ C ‖φ0‖p(1−2α)
B1

‖φ(·, t2)− φ(·, t1)‖2pα
B0

(∫ 1/2

0

x−
p
2

1
1−pα dx

)1−pα

.

Our conditions on α guarantee that the last integral converges. Repeating the process
on the interval [ 12 , 1] and using Lemma 14 gives us the result. ¥

Define the auxiliary function

ν(x, t) =
∫ t

0

(V φ)x(x, s) ds. (27)

Then there exists a constant C = C(γ, T ) so that

sup
0≤t<T

{
‖ν(·, t)‖L2(0,1) +

∥∥∥∥
∂ν

∂t
(·, t)

∥∥∥∥
L2(0,1)

}
≤ C ‖φ0‖B1

.

Indeed, we know φ ∈ C([0, T );B1) and t 7→ V (x, t) is continuous, so νt = (V φ)x =
(vx(1− x)φ)x while the estimate follows from (24).

The following Lemma is the key to interpreting (V φ)x on the boundary x = 0 or
x = 1. It strongly uses the fact that φ solves the equation (21).

Lemma 16 Let φ be the solution of Proposition 12, and let ν be given by (27). Then
for any 1 ≤ p < 2, there exists a constant C = C(γ, T, p) so that

sup
0≤t<T

∥∥∥∥
∂ν

∂x
(·, t)

∥∥∥∥
Lp(0,1)

≤ C ‖φ0‖B1
.
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Further, for any 0 < α < 1
p − 1

2

∂ν

∂x
∈ Cα([0, T );Lp)

and there is a constant C = C(γ, T, α, p) so that
∥∥∥∥
∂ν

∂x
(·, t2)− ∂ν

∂x
(·, t1)

∥∥∥∥
Lp

≤ C|t2 − t1|α ‖φ0‖B1
.

Proof: Because φt ∈ L2(0, T ;B0), and φ ∈ C([0, T );B1) we see that

φ(x, t)− φ0(x) =
∫ t

0

{−(Mφ)x + 1
2 (V φ)xx} ds

as elements of B0. Thus

∂ν

∂x
(x, t) =

∫ t

0

(V φ)xx(x, s) ds = 2
∫ t

0

(Mφ)x(x, s) ds+ 2[φ(x, t)− φ0(x)].

Then
∥∥∥∥
∂ν

∂x
(·, t)

∥∥∥∥
p

Lp

≤ C

∫ 1

0

(∫ t

0

(Mφ)x(x, s) ds
)p

dx+ C ‖φ(·, t)‖p
Lp

+ C ‖φ0‖p
Lp
.

However

∫ 1

0

(∫ t

0

(Mφ)x(x, s) ds
)p

dx ≤
(∫ t

0

∫ 1

0

(Mφ)2x dx ds
)p/2

t1−p/2

≤ t

(
ess sup
0≤s≤t

∫ 1

0

[mx(1− x)φ]2x dx

)p/2

≤ C ‖φ0‖p
B1

so that νx ∈ Lp(0, 1) for any 1 ≤ p < 2. Further,

∥∥∥∥
∂ν

∂x
(·, t2)− ∂ν

∂x
(·, t1)

∥∥∥∥
Lp

≤ C

∫ 1

0

(∫ t2

t1

(Mφ)x(x, s) ds
)p

dx

+ C ‖φ(·, t2)− φ(·, t1)‖p
Lp
.

Estimating the first term in the same fashion, we see that
∥∥∥∥
∂ν

∂x
(·, t2)− ∂ν

∂x
(·, t1)

∥∥∥∥
p

Lp

≤ C|t2 − t1| ‖φ0‖p
B1

+ C|t2 − t1|αp ‖φ0‖p
B1

and since α ≤ 1
p − 1

2 <
1
p , the result follows. ¥

As a consequence of this lemma and the Sobolev embeddingW 1
p (0, 1) ↪→ C1−1/p[0, 1],

we have the following.
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Lemma 17 Let φ be the solution of Proposition 12, and let ν be defined by (27). Then
for any 1 ≤ p < 2 and any 0 < α < 1

p − 1
2

ν ∈ Cα([0, T );C1− 1
p [0, 1]).

There is a constant C depending only on γ and T so that

sup
0≤t<T

sup
x∈[0,1]

|ν(x, t)| ≤ C ‖φ0‖B1

and
|ν(x2, t2)− ν(x1, t1)| ≤ C

{
|t2 − t1|α + |x2 − x1|1−1/p

}
‖φ0‖B1

Further, both ν(0, t) and ν(1, t) are defined for 0 ≤ t < T and there is a constant
C = C(γ, T ) so that

sup
0≤t<T

{|ν(0, t)|+ |ν(1, t)|} ≤ C ‖φ0‖B1
.

Finally, for any 0 < β < 1
2 , both ν(0, t) ∈ Cβ [0, T ) and ν(1, t) ∈ Cβ [0, T ) and there

is a constant C = C(γ, T, β) so that
∣∣ν(0, t2)− ν(0, t1)

∣∣ ≤ C|t2 − t1|β ‖φ0‖B1∣∣ν(1, t2)− ν(1, t1)
∣∣ ≤ C|t2 − t1|β ‖φ0‖B1

for any 0 ≤ t1 < t2 < T .

Up to this point, all of our estimates have depended on γ from (18). Now we turn
to estimates that are independent of γ. We begin with the following weak maximum
principle.

Proposition 18 Let φ be the solution of Proposition 12. Then for any 0 ≤ t1 < t2 < T
∫ 1

0

φ±(x, t2) dx ≤
∫ 1

0

φ±(x, t1) dx.

Proof: Let ε > 0, let 0 < a < b < 1, and assume that t1 > 0. Consider

ψ = ± φ±

x(1− x)φ± + ε
.

Clearly ψ ∈ L2(0, T ;B0) as ‖ψ‖2L2(0,T ;B0)
≤ ε−2 ‖φ‖2L2(0,T ;B0)

. Let ζn be smooth
functions with ζn → χ[a,b]×[t1,t2]. Take the inner product of the equation with ψζn in
B0, integrate in time, and send n→∞ to see that

∫ t2

t1

∫ b

a

φ±t
x(1− x)φ±

x(1− x)φ± + ε
dx dt

= −
∫ t2

t1

∫ b

a

(Mφ±)x
x(1− x)φ±

x(1− x)φ± + ε
dx dt

± 1
2

∫ t2

t1

∫ b

a

(V φ)xx
x(1− x)φ±

x(1− x)φ± + ε
dx dt. (28)
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Because

φ±t
x(1− x)φ±

x(1− x)φ± + ε
=

∂

∂t

{
φ± − ε ln

(
x(1− x)φ± + ε

)}
,

we have

∫ t2

t1

∫ b

a

φ±t
x(1− x)φ±

x(1− x)φ± + ε
dx dt

=
∫ b

a

{
φ± − ε

x(1− x)
ln

(
x(1− x)φ± + ε

)}
dx

∣∣∣∣∣

t2

t1

,

where we have used the fact that the last integrand is an element of Cβ([0, T );L1) for
any 0 < β < 1/2 (Lemma 15). Send ε ↓ 0 to find

lim
ε↓0

∫ t2

t1

∫ b

a

φ±t
x(1− x)φ±

x(1− x)φ± + ε
dx dt =

∫ b

a

φ±(x, t) dx

∣∣∣∣∣

t2

t1

. (29)

The middle term in (28) is estimated simply; indeed, because

∥∥(Mφ±)x

∥∥
L1(0,T ;L1(0,1))

≤
∫ T

0

∫ 1

0

∣∣m[x(1− x)φ±]x +mxx(1− x)φ±
∣∣ dx dt

≤ C ‖φ‖L2(0,T ;B1)

and because

0 ≤ x(1− x)φ±

x(1− x)φ± + ε
≤ 1

we can use dominated convergence to find

lim
ε↓0

∫ t2

t1

∫ b

a

(Mφ±)x
x(1− x)φ±

x(1− x)φ± + ε
dx dt =

∫ t2

t1

∫ b

a

(Mφ±)x dx dt. (30)

To estimate the last term, we note that V is smooth in x while φ ∈ L2(0, T ;B2) ↪→
L2(0, T ;C3/2

loc (0, 1)) so that we can integrate by parts and find

±
∫ t2

t1

∫ b

a

(V φ)xx
x(1− x)φ±

x(1− x)φ± + ε
dx dt

= ±
∫ t2

t1

(V φ)x
x(1− x)φ±

x(1− x)φ± + ε
dt

∣∣∣∣∣

x=b

x=a

−
∫ t2

t1

∫ b

a

(V φ±)x
ε[x(1− x)φ±]x

(x(1− x)φ± + ε)2
dx dt.
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There exists a constant C depending only on γ so that
∫ t2

t1

∫ b

a

(V φ±)x
ε[x(1− x)φ±]x

(x(1− x)φ± + ε)2
dx dt

=
∫ t2

t1

∫ b

a

v
ε[x(1− x)φ±]2x

(x(1− x)φ± + ε)2
dx dt

+
∫ t2

t1

∫ b

a

vx
εx(1− x)φ±[x(1− x)φ±]x

(x(1− x)φ± + ε)2
dx dt

≥ −Cε
∫ t2

t1

∫ b

a

|[x(1− x)φ±]x|
x(1− x)φ± + ε

dx dt

so that

±
∫ t2

t1

∫ b

a

(V φn)xx
φ±n

x(1− x)φ±n + ε
dx dt

≤ ±
∫ t2

t1

(V φn)x
φ±n

x(1− x)φ±n + ε
dt

∣∣∣∣∣

x=b

x=a

+ Cε

∫ t2

t1

∫ b

a

|[x(1− x)φ±n ]x|
x(1− x)φ±n + ε

dx dt. (31)

Now we wish to pass to the limit as ε ↓ 0. To handle the first term, we note that φ ∈
C([0, T );B1), so V φ ∈ C([0, T );W 1

2 ), and thus V φ± ∈ C([0, T );W 1
2 ). As a conse-

quence (V φ±)x = ±(V φ)xχ[φ± > 0] is well-defined as an element of C([0, T );L2).
However, this, by itself, is insufficient to define (V φ±)x for any particular x, as we
need. On the other hand, because φ ∈ L2(0, T ;B2) ↪→ L2(0, T ;C3/2

loc (0, 1)), the func-
tion ±(V φ)xχ[φ± > 0] is defined for all x as an element of L2(0, T ). This lets us use
dominated convergence in the first term, and find

lim
ε↓0

∫ t2

t1

±(V φ)x
x(1− x)φ±

x(1− x)φ± + ε
dt

∣∣∣∣∣

x=b

x=a

=
∫ t2

t1

±(V φ)xχ[φ± > 0] dt

∣∣∣∣∣

x=b

x=a

.

For the second, we note that, because 0 ≤ ε
x(1−x)φ±+ε ≤ 1 and because φ ∈ L2(0, T ;B2),

we can apply dominated convergence to see that

lim
ε↓0

∫ t2

t1

∫ b

a

ε

x(1− x)φ± + ε
|[x(1− x)φ±]x| dx dt = 0.

Thus

lim
ε↓0

∫ t2

t1

∫ b

a

±(V φ)xx
φ±

x(1− x)φ± + ε
dx dt

≤
∫ t2

t1

±(V φ)xχ[φ± > 0] dt

∣∣∣∣∣

x=b

x=a

. (32)
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Combining (28), (29), (30) and (32) we find that, for any 0 < a < b < 1 and any
0 < t1 < t2 < T

∫ b

a

φ± dx

∣∣∣∣∣

t=t2

t=t1

≤
∫ t1

t1

∫ b

a

(Mφ±)x dx dt±
∫ t2

t1

(V φ)xχ[φ± > 0] dt

∣∣∣∣∣

x=b

x=a

. (33)

Next, we would like to send a ↓ 0 and b ↑ 1. Because φ ∈ Cβ([0, T );L1) for any
0 < β < 1/2, dominated convergence implies

lim
b↑1

lim
a↓0

∫ b

a

φ±(x, t) dx =
∫ 1

0

φ(x, t)± dx (34)

for any 0 ≤ t < T .
For the second term of (33) we start with the fact that φ ∈ C([0, T );B1), so the

continuity of M(x, t, R̃(t)) in time implies Mφ ∈ C([0, T );W 1
2 (0, 1)) and hence

Mφ± ∈ C([0, T );W 1
2 (0, 1)). Thus

lim
b↑1

lim
a↓0

∫ t2

t1

∫ b

a

(Mφ±)x dx dt =
∫ t2

t1

∫ 1

0

(Mφ±)x dx dt.

For each fixed t, we know Mφ = mx(1 − x)φ, so (Mφ)(·, t) ∈
◦
W 1

2(0, 1) and thus

(Mφ±)(·, t) ∈
◦
W 1

2(0, 1). Consequently for each t
∫ 1

0

(Mφ±)x dx = 0. (35)

Though the embedding φ ∈ L2(0, T ;B2) ↪→ L2(0, T ;C3/2
loc (0, 1)) is sufficient to

define ±(V φ)xχ[φ± > 0] for all x, it is not sufficient to ensure its continuity in x.
Despite this, we can still find sequences an ↓ 0 and bn ↑ 1 on which we can bound
limn→∞

∫ t2
t1
±(V φ)xχ[φ± > 0] dt

∣∣x=bn

x=an
. Indeed for fixed t1 and t2, define

µ±(x) =
∫ t2

t1

(V φ±)(x, t) dt.

Because V ≥ 0, we see that µ±(x) ≥ 0 for all x. Now µ± ∈ W 1
2 (0, 1); indeed

‖µ±‖W 1
2 (0,1) ≤ C ‖φ‖L2(0,T ;B1)

. Thus

µ±x (x) =
∫ t2

t1

±(V φ)xχ[φ± > 0] dt

for almost every x. Further, Sobolev embedding implies µ± ∈ C1/2[0, 1]. and µ±(0) =
µ±(1) = 0; indeed Corollary 6 implies

µ±(x) =
∫ t2

t1

vx(1− x)φ± dt

≤ Cx(1− x)max
(

1√
x
,

1√
1− x

)
‖φ‖L2(0,T ;B1)

.
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Now we claim that for every δ > 0, both

meas{x ∈ (0, δ) : µ±x (x) ≥ 0} > 0 and (36a)

meas{x ∈ (1− δ, 1) : µ±x (x) ≤ 0} > 0. (36b)

Indeed, if the first does not hold, then there exists some δ > 0 so that µ±x < 0 for
almost every x ∈ (0, δ). Then

µ±(x) =
∫ x

0

µ±x (y) dy < 0

on (0, δ), which contradicts the fact that µ±(x) ≥ 0. The second claim follows simi-
larly.

As a consequence, we can find sequences an ↓ 0 and bn ↑ 1 so that

±
∫ t2

t1

(V φ)xχ[φ± > 0] dt
∣∣∣
x=an

≥ 0 (37a)

±
∫ t2

t1

(V φ)xχ[φ± > 0] dt
∣∣∣
x=bn

≤ 0. (37b)

If we then pass to the limit in (33) along the sequences an ↓ 0 and bn ↑ 1 and apply
(34), (35) and (37), we see that

∫ 1

0

φ±(x, t) dx

∣∣∣∣∣

t=t2

t=t1

≤ 0

at least if t1 > 0. The result for t1 = 0 follows from this and the continuity φ ∈
Cβ([0, T );L1) for 0 < β < 1/2. ¥

Based on (8)-(9), we make the definition

R0(t) = R0(0)− 1
4
ν(0, t) and R1(t) = R1(0)− 1

4
ν(1, t). (38)

We can then define

R(t) =
∫ 1

0

(x− 1
2 )φ(x, t) dx+R0(t) +R1(t). (39)

Lemma 19 Let φ be the solution of Proposition 12. Then for any 0 ≤ t1 < t2 < T

R(t2)−R(t1) =
∫ t2

t1

∫ 1

0

Mφ dx dt.

Proof: Our equation is satisfied in L2(0, T ;B0) ↪→ L2(0, T ;L2,loc(0, 1)), so for
any 0 < a < b < 1

∫ t2

t1

∫ b

a

(x− 1
2 )φt dx dt = −

∫ t2

t1

∫ b

a

(x− 1
2 )(Mφ)x dx dt

+
1
2

∫ t2

t1

∫ b

a

(x− 1
2 )(V φ)xx dx dt.
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Now φ ∈ Cβ([0, T );L1(0, 1)) for any 0 < β < 1/2, so that

lim
b↑1

lim
a↓0

∫ t2

t1

∫ b

a

(x− 1
2 )φt dx dt =

∫ 1

0

(x− 1
2 )φ(x, t) dx

∣∣∣∣∣

t=t2

t=t1

. (40)

For the second term, because φ ∈ C([0, T );B1) we know Mφ ∈ C([0, T );
◦
W 1

2(0, 1)).
We can then pass to the limit and integrate by parts to find

− lim
b↑1

lim
a↓0

∫ t2

t1

∫ b

a

(x− 1
2 )(Mφ)x dx dt

=
∫ t2

t1

∫ 1

0

(x− 1
2 )(Mφ)x dx dt =

∫ t2

t1

∫ 1

0

Mφ dx dt. (41)

For the last term, we start by noting that
∫ t2

t1

∫ b

a

(x− 1
2 )(V φ)xx dx dt =

∫ b

a

(x− 1
2 )[νx(x, t2)− νx(x, t1)] dx.

Now for any 1 ≤ p < 2 and any 0 < α < 1/p−1/2 we have νx ∈ Cα([0, T );Lp(0, 1))
and ν ∈ Cα([0, T );C1−1/p[0, 1]), so an integration by parts gives us

lim
b↑1

lim
a↓0

∫ t2

t1

∫ b

a

(x− 1
2 )(V φ)xx dx dt = −

∫ 1

0

[ν(x, t2)− ν(x, t1)] dx

+ 1
2 [ν(1, t2)− ν(1, t1)] + 1

2 [ν(0, t2)− ν(0, t1)].

Now φ ∈ C([0, T );B1), so V φ ∈ C([0, T );
◦
W 1

2(0, 1)) and hence
∫ 1

0

[ν(x, t2)− ν(x, t1)] dx =
∫ t2

t1

∫ 1

0

(V φ)x dx dt = 0.

Thus

lim
b↑1

lim
a↓0

∫ t2

t1

∫ b

a

(x− 1
2 )(V φ)xx dx dt

= 1
2 [ν(1, t2)− ν(1, t1)] + 1

2 [ν(0, t2)− ν(0, t1)]
= −2(R1(t2)−R1(t1))− 2(R0(t2)−R0(t1)). (42)

Combining (40), (41), and (42) gives us our result. ¥

Lemma 20 Let φ be the solution of Proposition 12, and suppose that φ0 ≥ 0. Then
R ∈ C1[0, T ) and

|R(t)| ≤
[
|R(0)|+ ‖φ0‖L1(0,1)

∫ t

0

M1(s) ds
]

exp
[
‖φ0‖L1(0,1)

∫ t

0

M2(s) ds
]

for any 0 ≤ t < T .
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Proof: Because φ0 ≥ 0, we can use Proposition 18 to conclude that φ ≥ 0. Then
Lemma 19 implies

R(t) = R(0) +
∫ t

0

∫ 1

0

Mφ dx ds.

Applying (H3), we see that

|R(t)| ≤ |R(0)|+
∫ t

0

[M1(s) +M2(s)|R(s)|]
∫ 1

0

φ(x, s) dx ds.

Then because Proposition 18 implies ‖φ(·, t)‖L1(0,1) ≤ ‖φ0‖L1(0,1), we find

|R(t)| ≤
[
|R(0)|+ ‖φ0‖L1(0,1)

∫ t

0

M1(s) ds
]

+
∫ t

0

‖φ0‖L1(0,1)M2(s)|R(s)| ds

and so Gronwall’s inequality [3, Thm. 2.1] gives us the result. ¥

6 The fixed point argument
To prove that the full nonlinear problem has a solution, we will rely on the compactness
properties of the set of solutions to the problem with fixed coefficients. In particular,
we will need the following.

Lemma 21 Let 0 < α < 1
2 , let {φn}∞n=1 ⊂ C([0, T );B1) ∩ Cα([0, T );L1), and

suppose that there is a constant C so that, for all n

sup
0≤t<T

‖φn(·, t)‖B1
≤ C (43)

and for every 0 ≤ t1 < t2 < T and for all n

‖φn(·, t2)− φn(·, t1)‖L1
≤ C|t2 − t1|α. (44)

Then there is a subsequence {φnj
}∞j=1 and a function φ ∈ Cα([0, T );L1) so that

∥∥φnj (·, t)− φ(·, t)∥∥
L1
−→ 0

uniformly for t ∈ [0, T ).

Proof: Let T = {tj}∞j=1 be a dense subset of [0, T ). We claim that, for each tj , there
is a function φ(·, tj) ∈ B1 ↪→ L1(0, 1) and a sequence {nj(k)}∞k=1 so that

• {nj+1(k)}∞k=1 is a subsequence of {nj(k)}∞k=1 for all j = 1, 2, . . .; and

• ∥∥φnj(k)(·, tj)− φ(·, tj)
∥∥

L1
≤ 2−k for all j and k.

This follows by induction. Indeed, (43) implies that ‖φn(·, t1)‖B1
≤ C for all n. Then

the compactness B1 ↪→ L1 implies that there is a function φ(·, t1) ∈ B1 ↪→ L1(0, 1)

28



and a subsequence {n1(k)}∞k=1 so that
∥∥φn1(k)(·, t1)− φ(·, t1)

∥∥
L1

→ 0; choosing
another subsequence if necessary, we can ensure

∥∥φn1(k)(·, t1)− φ(·, t1)
∥∥

L1
< 2−k

for all k.
Given φ(·, tj) and {nj(k)}∞k=1, we again use (43) to see that

∥∥φnj(k)(·, tj+1)
∥∥

B1
≤

C for all k. Again the compactness B1 ↪→ L1 allows us to find a function φ(·, tj+1)
and a subsequence {nj+1(k)}∞k=1 of {nj(k)}∞k=1 so that

∥∥φnj+1(k)(·, tj+1)− φ(·, tj+1)
∥∥

L1
< 2−k

for all k. This completes the induction.
Define nj = nj(j). Then for any k and for any j ≥ k

∥∥φnj
(·, tk)− φ(·, tk)

∥∥
L1
≤ 2−j . (45)

Indeed, because j ≥ k, we know that {nj(i)}∞i=1 is a subsequence of {nk(i)}∞i=1. Thus
there is some i ≥ j so that

nj(j) = nk(i).

Then
∥∥φnj (·, tk)− φ(·, tk)

∥∥
L1

=
∥∥φnk(i)(·, tk)− φ(·, tk)

∥∥
L1
≤ 2−i ≤ 2−j ,

proving the claim.
Let s, t ∈ T . Then, for any i

‖φ(·, t)− φ(·, s)‖L1
≤ ‖φ(·, t)− φni(·, t)‖L1

+ ‖φni(·, t)− φni(·, s)‖L1
+ ‖φni(·, s)− φ(·, s)‖L1

.

We can use (44) to estimate the middle term, then use (45) and the fact that s and t are
fixed to pass to the limit in the first and last to find that

‖φ(·, t)− φ(·, s)‖L1
≤ C|t− s|α (46)

for all s, t ∈ T .
Now choose t /∈ T . Let {τk}∞k=1 ⊂ T with τk → t. Then (46) implies that

{φ(·, τk)}∞k=1 is Cauchy in L1(0, 1). Thus there exists a function φ(·, t) ∈ L1(0, 1) so
that φ(·, τj) → φ(·, t) in L1(0, 1). Then, passing to the limit in (46), we see that we
have defined a function φ(·, t) for all t so that

‖φ(·, t)− φ(·, s)‖L1
≤ C|t− s|α (47)

for all s and t.
Now we claim that φnj (·, t) → φ(·, t) in L1(0, 1), uniformly in t ∈ [0, T ). Indeed,

let ε > 0. Let {si}n
i=1 be a finite set of elements of [0, T ) so that for all t ∈ [0, T ) there

exists i so that |t − si| < 1
2

(
ε

4C

)1/α. Because T is dense in [0, T ), for each i there
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exists k(i) so that |tk(i)−si| < 1
2

(
ε

4C

)1/α. SetK = max{k(i)}n
i=1. ThenK depends

only on ε and C, and for any t ∈ [0, T ) there exists tk ∈ T so that |t− tk| <
(

ε
4C

)1/α

with k ≤ K.
Choose j ≥ K so large that 2−j ≤ ε/2. Let t ∈ [0, T ), and choose tk as above.

Then

∥∥φ(·, t)− φnj
(·, t)

∥∥
L1
≤ ‖φ(·, t)− φ(·, tk)‖L1

+
∥∥φ(·, tk)− φnj

(·, tk)
∥∥

L1
+

∥∥φnj
(·, tk)− φnj

(·, t)
∥∥

L1
.

Then (44) and (47) allow us to estimate the first and the last terms, while we can use
(45) on the last to find

∥∥φ(·, t)− φnj (·, t)
∥∥

L1
≤ 2C|t− tk|α + 2−j .

Our choices of tk and j imply the result. ¥

Lemma 22 Let {φn}∞n=1 ⊂ C([0, T );B1)∩C1/2([0, T );B0), and suppose that there
is a constant C so that, for all n

sup
0≤t<T

‖φn(·, t)‖B1
≤ C

and for every 0 ≤ t1 < t2 < T and for all n

‖φn(·, t2)− φn(·, t1)‖L1
≤ C|t2 − t1|1/2.

Then there is a subsequence {φnj}∞j=1 and a function φ ∈ C1/2([0, T );B0) so that

∥∥φnj (·, t)− φ(·, t)
∥∥

B0
−→ 0

uniformly for t ∈ [0, T ).

Proof: This follows the same lines as the previous, with B0 in place of L1. ¥
For notational convenience, let U be the space

U = C([0, T );L1(0, 1))× C[0, T )× C[0, T ).

Consider the function
F : U → U

defined by the rule
F(φ̃, R̃0, R̃1) = (φ,R0, R1)

where φ is the solution given by Proposition 12 and R0 and R1 are defined by (38).
Existence will follow once we show that F has a fixed point.

To show that F is continuous, let {(φ̃k, R̃k,0, R̃k,1)}∞k=1 ⊂ U and suppose that
(φ̃k, R̃k,0, R̃k,1) −→ (φ̃, R̃0, R̃1) in U . Let F(φ̃k, R̃k,0, R̃k,1) = (φk, Rk,0, Rk,1) and
F(φ̃, R̃0, R̃1) = (φ,R0, R1).
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Let

R̃k(t) =
∫ 1

0

(x− 1
2 )φ̃k(x, t) dx+ R̃k,0(t) + R̃k,1(t).

Then clearly R̃k(t) → R̃(t) where

R̃(t) =
∫ 1

0

(x− 1
2 )φ̃(x, t) dx+ R̃0(t) + R̃1(t).

Moreover, the convergence (φ̃k, R̃k,0, R̃k,1) −→ (φ̃, R̃0, R̃1) in U implies that there
exists a single constant γ0 so that |R̃k|, |Rk| ≤ γ0 for all t.

Define

Mk = M(x, t, R̃k(t)) and M = M(x, t, R̃(t));

Vk = V (x, t, R̃k(t)) and V = V (x, t, R̃(t)).

Now

Mk −M =
[
∂M

∂R
(x, t, λR̃k(t) + (1− λ)R̃(t))

]
(R̃k(t)− R̃(t))

for some 0 ≤ λ ≤ 1. Thus (H2) implies that there is a constant C = C(γ0) so that

|Mk −M | ≤ C|R̃k(t)− R̃(t)|.

Similarly,
|Vk − V | ≤ C|R̃k(t)− R̃(t)|.

As a consequence, we know Mk →M and Vk → V uniformly on [0, 1]× [0, T ).
Let {k(n)}∞n=1 be any subsequence of N. Then

∥∥φk(n)

∥∥
L2(0,T ;B2)

≤ C ‖φ0‖B1

where C depends only on γ0. Similarly, for any 0 ≤ t < T we have
∥∥φk(n)(·, t)

∥∥
B1
≤

C ‖φ0‖B1
and for any 0 ≤ t1 < t2 < T we have

∥∥φk(n)(·, t2)− φk(n)(·, t1)
∥∥

B0
≤

C|t2 − t1|1/2 ‖φ0‖B1
and

∥∥φk(n)(·, t2)− φk(n)(·, t1)
∥∥

L1
≤ C|t2 − t1|α ‖φ0‖B1

for
any 0 < α < 1/2. Thus Lemmas 21 and 22 let us find a function φ∗ ∈ L2(0, T ;B2) ∩
C1/2([0, T );B0)∩Cα([0, T );L1) and a subsequence {k′(n)}∞n=1 so that φk′(n) ⇀ φ∗

weakly in L2(0, T ;B2) and φk′(n)(·, t) → φ∗(·, t) strongly in B0 and in L1(0, 1)
uniformly in t.

Lemma 17 and the Ascoli-Arzela theorem imply that there is a function ν∗ ∈
Cα([0, T );C1−1/p[0, 1]) so that if

νk(x, t) =
∫ t

0

(Vkφk)x(x, s) dx ds

then νk′(n) −→ ν∗ uniformly on [0, 1] × [0, T ) modulo an additional subsequence
which we still call {k′(n)}∞n=1.

Because (φk′(n))t = −(Mk′(n)φk′(n))x + 1
2 (Vk′(n)φk′(n))xx, we can pass to the

limit as n → ∞ to find that φ∗ satisfies φ∗t = −(Mφ∗)x + 1
2 (V φ∗)xx. Further,

φ∗(·, t) → φ0 as t ↓ 0 in B0; this follows from the uniform convergence φk′(n) → φ∗
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in C1/2([0, T );B0) and the fact that φk′(n)(·, t) → φ0 as t ↓ 0 in B0 for any fixed
k′(n). The uniqueness of Proposition 12 implies φ∗ = φ. Further, νk′(n)(x, t) =∫ t

0
(Vk′(n)φk′(n))x(x, s) ds, so passing to the limit we find that ν∗(x, t) = ν(x, t).
Therefore we have shown that, for any subsequence {k(n)}∞n=1, there exists a sub-

subsequence {k′(n)}∞n=1 so that φk′(n) −→ φ in Cα([0, T );L1) and νk′(n) −→
ν in Cβ([0, T );C1−1/p[0, 1]) for any 0 < α < 1

2 , for any 1 ≤ p < 2, and for any
0 < β < 1

2 − 1
p . Thus, we know the original sequence converges, and

φk −→ φ in Cα([0, T );L1)

νk −→ ν in Cβ([0, T );C1−1/p[0, 1])

Now

Rk,0(t) = R0(0) + νk(0, t) R0(t) = R0(0) + ν(0, t)
Rk,1(t) = R1(0) + νk(1, t) R1(t) = R1(0) + ν(1, t)

so that (φk, Rk,0, Rk,1) −→ (φ,R0, R1) in U ; hence F : U → U is continuous.
Compactness of F is almost immediate. Indeed, if {φ̃k, R̃k,0, R̃k,1} ⊂ U is bounded

then Lemma 17 and Lemma 21 imply that the solutions {φk, Rk,0, Rk,1} have a sub-
sequence that converges in U .

Finally, the set {(φ,R0, R1) ∈ U : (φ,R0, R1) = σF(φ,R0, R1) for some 0 ≤
σ ≤ 1} is bounded in U . Indeed, suppose that (φ,R0, R1) = σF(φ,R0, R1), and
define (φ∗, R∗0, R

∗
1) = F(φ,R0, R1). Then

{
φ∗(x, t) = −(Mφ∗)x + 1

2 (V φ∗)xx,

φ∗(x, 0) = φ0.

But (φ,R0, R1) = (σφ∗, σR∗0, σR
∗
1), so that

{
φ(x, t) = −(Mφ)x + 1

2 (V φ)xx,

φ(x, 0) = σφ0.

Now Lemma 20 implies

|R(t)| ≤
[
|R(0)|+ ‖φ0‖L1(0,1)

∫ t

0

M1(s) ds
]

+
∫ t

0

‖φ0‖L1(0,1)M2(s)|R(s)| ds
(48)

hence there is a constant γ depending only on T and initial data so that |R(t)| ≤ γ.
Thus the γ that appears in Proposition 12 and in subsequent results can be bounded by
the right side of (48) in terms of T and the initial data, which proves the claim.

Existence then follows from Schaefer’s fixed point theorem [7, §9.2, Theorem 4].
¥

7 Uniqueness and Stability
Now we shall prove Theorem 2. For notational simplicity, let φ̄(x, t) = φ(x, t) −
φ∗(x, t); define M̄ , V̄ , and R̄ similarly. For any (x, t) we have

M̄ = M(x, t, R(t))−M(x, t, R∗(t))
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so that

|M̄ | ≤
∣∣∣∣
∂M

∂R
(x, t, λR(t) + (1− λ)R∗(t))

∣∣∣∣ |R̄(t)|

for some 0 ≤ λ ≤ 1. BecauseB1 ↪→ L1(0, 1), we see thatR,R∗ ∈ C[0, T ], so there is
a single bounded interval [a, b] so that λR(t)+ (1−λ)R∗(t) ∈ [a, b] for all 0 ≤ λ ≤ 1
and all 0 ≤ t ≤ T . Thus, there exists a constant C depending only on ‖R,R∗‖C0[0,1]

so that
|M̄ | ≤ C|R̄(t)|

for all x.
Using the representations of R and R∗, we find that

|M̄(x, t)| ≤ C

∣∣∣∣
∫ t

0

∫ 1

0

(Mφ−M∗φ∗) dx ds
∣∣∣∣ + C|R̄(0)|

≤ C

∫ t

0

∫ 1

0

(|M̄φ|+ |M∗φ̄|) dx ds+ C|R̄(0)|.

From here, we can apply Gronwall’s inequality. Indeed, if

µ(t) = sup
0≤x≤1

|M̄ |

then

µ(t) ≤ C

∫ t

0

µ(s)
∫ 1

0

|φ(y, s)| dy ds+ C

∫ t

0

∫ 1

0

|M∗φ̄| dy ds+ C|R̄(0)|.

Thus the integral form of Gronwall’s inequality [3, Thm 2.1] implies

µ(t) ≤
{
C

∫ t

0

∫ 1

0

|M∗φ̄| dx ds+ C|R̄(0)|
}

exp
{
C

∫ t

0

∫ 1

0

|φ(y, s)| dy ds
}

and so letting C depend on ‖φ‖C([0,T ];B1)
and T , we find

|M̄(x, t)| ≤ C

∫ t

0

∫ 1

0

|M∗φ̄| dx ds+ C|R̄(0)|. (49)

Now |R̄(t)| ≤ |R(t)−R(0)−R∗(t) +R∗(0)|+ |R̄(0)| and hence

|R̄(t)| ≤
∫ t

0

∫ 1

0

|M̄φ| dy ds+
∫ t

0

∫ 1

0

|M∗φ̄| dy ds+ |R̄(0)|

so that (49) implies

|R̄(t)| ≤ C

∫ t

0

∫ 1

0

|M∗φ̄| dx ds+ C|R̄(0)|

≤ C

∫ t

0

∫ 1

0

x(1− x)|φ̄| dx ds+ C|R̄(0)|.
(50)
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where C depends on ‖R∗0, R∗1‖C0[0,T ] and ‖φ∗‖C([0,T ];B1)
.

By subtraction, we see that

φ̄t = −(M∗φ̄)x + 1
2 (V ∗φ̄)xx − (M̄φ)x + 1

2 (V̄ φ)xx.

Because φ̄ ∈ L2(0, T ;B2), we know that φ̄t ∈ L2(0, T ;B0) (Corollary 12) and so
taking the inner product with φ̄ in B0 we find for every 0 ≤ t ≤ T that

1
2

∫ 1

0

x(1− x)φ̄2 dx
∣∣∣
t
+

1
2

∫ t

0

∫ 1

0

(V ∗φ̄)x[x(1− x)φ̄]x dx ds

=
1
2

∫ 1

0

x(1− x)φ̄2
0 dx+

∫ t

0

∫ 1

0

M∗φ̄[x(1− x)φ̄]x dx ds

+
∫ t

0

∫ 1

0

M̄φ[x(1− x)φ̄]x dx ds− 1
2

∫ t

0

∫ 1

0

(V̄ φ)x[x(1− x)φ̄]x dx ds.

Young’s inequality then implies

∫ 1

0

x(1− x)φ̄2 dx
∣∣∣
t
+

∫ t

0

∫ 1

0

[x(1− x)φ̄]2x dx ds

≤ C

∫ 1

0

x(1− x)φ̄2
0 dx+ C

∫ t

0

∫ 1

0

x(1− x)φ̄2 dx ds

+ C

∫ t

0

∫ 1

0

{
m̄x(1− x)φ)2 + (v̄x(1− x)φ)2x

}
dx ds.

To estimate the last term, we first note that

|m̄| ≤
∣∣∣∣
∂m

∂R
(x, t, λR(t) + (1− λ)R∗(t))

∣∣∣∣ |R̄| ≤ C|R̄|.

Similarly,

|v̄|+ |v̄x| ≤ C

{∣∣∣∣
∂v

∂R

∣∣∣∣ +
∣∣∣∣
∂2v

∂R∂x

∣∣∣∣
}
|R̄| ≤ C|R̄|.

Thus, if we use (50) we find
∫ 1

0

x(1− x)φ̄2 dx
∣∣∣
t
+

∫ t

0

∫ 1

0

[x(1− x)φ̄]2x dx ds

≤C
∫ 1

0

x(1− x)φ̄2
0 dx+ C

∫ t

0

∫ 1

0

x(1− x)φ̄2 dx ds

+ C

{∫ t

0

∫ 1

0

x(1− x)|φ̄| dy ds+ C|R̄(0)|
}2

·
∫ t

0

∫ 1

0

{x(1− x)φ2 + [x(1− x)φ]2x} dx ds
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and thus
∫ 1

0

x(1− x)φ̄2 dx
∣∣∣
t
+

∫ t

0

∫ 1

0

[x(1− x)φ̄]2x dx ds

≤ C

∫ 1

0

x(1− x)φ̄2
0 dx+ C|R̄(0)|2 + C

∫ t

0

∫ 1

0

x(1− x)φ̄2 dx ds.

Applying Gronwall’s inequality, we find
∫ 1

0

x(1− x)φ̄2 dx
∣∣∣
t
≤ CeCt

(∫ 1

0

x(1− x)φ̄2
0 dx+ |R̄(0)|2

)
.

Thus the definition of R(t) and the embedding B1 ↪→ L1(0, 1) imply

sup
0≤t≤T

∫ 1

0

x(1− x)(φ− φ∗)2 dx
∣∣∣
t

+
∫ T

0

∫ 1

0

[x(1− x)(φ− φ∗)]2x dx dt

≤ C

∫ 1

0

x(1− x)(φ0 − φ∗0)
2 dx+

∫ 1

0

[x(1− x)(φ0 − φ∗0)]
2
x

+ C|R0(0)−R1(0)−R∗0(0) +R∗1(0)|2.
This then gives us conclusion 1 of Theorem 2. To prove conclusion 2, note that the
uniqueness implied by conclusion 1 implies that φ and φ∗ must satisfy the estimates of
Theorem 1. In particular, all of the quantities on which C depends have been estimated
in terms of initial data. ¥

8 Asymptotic Behavior
Now we restrict our attention to the specific choices for M and V made in (5) and (6),
namely (after rescalings; see also [16])

V = x(1− x), (51a)
M = κx(1− x)(ρ−R(t)). (51b)

Here κ represents selection strength and ρ is the optimal trait mean.
There are two important biological questions in the limit t→∞,

• What is the behavior of the trait mean R(t) as t→∞?

• What is the behavior of the total genetic variance S2(t) as t→∞? Here

S2(t) = 〈φ(·, t), 1〉B0
=

∫ 1

0

x(1− x)φ(x, t) dx.

We begin with the following relationship between S2 and R.
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Proposition 23 Let φ be the solution of Theorem 1, under the assumptions (51), and
let R0 = R(0) = R0(0) +R1(0) +

∫ 1

0
(x− 1/2)φ0(x) dx. Then

R(t)− ρ = (R0 − ρ) exp
∫ t

0

∫ 1

0

−κ x(1− x)φ(x, τ) dx dτ

= (R0 − ρ) exp
∫ t

0

−κ S2(τ) dτ.

Proof: From Theorem 1 and (51), for any 0 ≤ t1 < t2 < T

R(t2)−R(t1) =
∫ t2

t1

∫ 1

0

Mφ dx dt

=
∫ t2

t1

κ (ρ−R)
∫ 1

0

x(1− x)φ dx dt.
(52)

Now φ ∈ C([0, T );B1) so t 7→ ∫ 1

0
x(1− x)φ(x, t) dx is continuous; indeed

∣∣∣∣
∫ 1

0

x(1− x)[φ(x, t2)− φ(x, t1)] dx
∣∣∣∣

≤
(∫ 1

0

x(1− x) dx
) 1

2
(∫ 1

0

x(1− x)[φ(x, t2)− φ(x, t1)]2 dx
) 1

2

≤ 1
6
‖φ(·, t2)− φ(·, t1)‖B0

≤ 1
6
‖φ(·, t2)− φ(·, t1)‖B1

.

Dividing (52) by t2 − t1 and letting t2 → t1, we find that

R′(t) = κ (ρ−R)
∫ 1

0

x(1− x)φ(x, t) dx

for all 0 < t < T . This gives us the linear equation for (R− ρ)

(R− ρ)′ + κ (R− ρ)
∫ 1

0

x(1− x)φ(x, t) dx = 0

which is equivalent to

d

dt

{
(R− ρ) exp

∫ t

0

∫ 1

0

κ x(1− x)φ(x, τ) dx dτ
}

= 0

and has solution

R(t)− ρ = (R0 − ρ) exp
∫ t

0

∫ 1

0

−κ x(1− x)φ(x, τ) dx dτ.

¥.
Now we turn our attention to the total genetic variance.
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Proposition 24 Let φ be the solution of Theorem 1 under the assumptions (51). Then
∫ ∞

0

∫ 1

0

x(1− x)φ(x, t) dx dt <∞.

Remark: This is a weak way of saying that S2(t) → 0 as t→∞.
Remark: Although Theorem 1 only guarantees the existence of a solution on [0, T )

for finite T < ∞, the fact that T is arbitrary and that solutions are unique 2 lets us
define φ(x, t) for all 0 ≤ t <∞.

Proof: Let 0 < T <∞ be arbitary; then the equation implies

φt = −(Mφ)x + 1
2 (V φ)xx

in L2(0, T ;B0). Then, taking the inner product with 1 in B0 and using the particular
forms for M and V from (51), we find

∫ 1

0

x(1− x)φt dx = −
∫ 1

0

x(1− x)[κ x(1− x)(ρ−R)φ]x dx

+
1
2

∫ 1

0

x(1− x)[x(1− x)φ]xx dx

in L2(0, T ). Because C∞[0, 1] is dense in B2, we can integrate by parts to see that

1
2

∫ 1

0

x(1− x)[x(1− x)φ]xx dx = −1
2

∫ 1

0

[x(1− x)]x[x(1− x)φ]x dx

and because x(1− x)φ(·, t) ∈ B1 ↪→
◦
W 1

2(0, 1) we have

1
2

∫ 1

0

x(1− x)[x(1− x)φ]xx dx =
1
2

∫ 1

0

[x(1− x)]xxx(1− x)φ dx.

Similarly

−
∫ 1

0

x(1− x)[κ x(1− x)(ρ−R)φ]x dx

= −κ (ρ−R)
∫ 1

0

x(1− x)[x(1− x)φ]x dx

= −κ (R− ρ)
∫ 1

0

(2x− 1)x(1− x)φ dx.

Thus

d

dt

∫ 1

0

x(1− x)φ dx = κ (R− ρ)
∫ 1

0

(2x− 1)x(1− x)φ dx

−
∫ 1

0

x(1− x)φ dx.
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We can now substitute for R− ρ using Proposition 23 to find

d

dt

∫ 1

0

x(1− x)φ dx = −
∫ 1

0

x(1− x)φ dx

+ κ(R0 − ρ)
{

exp
∫ t

0

∫ 1

0

−κ x(1− x)φ(x, τ) dx dτ
}

·
∫ 1

0

(2x− 1)x(1− x)φ dx

as elements of L2(0, T ). However, the continuity φ ∈ C([0, T );B1) implies that the
right side and hence the left side are continuous; thus it holds for all time 0 < t <∞.

Let 0 < δ < 1 be chosen arbitrarily. Because φ ≥ 0 and because κ > 0, we know
that the function

t 7→ exp
∫ t

0

∫ 1

0

−κ x(1− x)φ(x, τ) dx dτ

is monotone non-increasing. Then, either for every t we have

κ|R0 − ρ|
{

exp
∫ t

0

∫ 1

0

−κ x(1− x)φ(x, τ) dx dτ
}
> δ

or there exists some T (δ) so that

κ|R0 − ρ|
{

exp
∫ t

0

∫ 1

0

−κ x(1− x)φ(x, τ) dx dτ
}
≤ δ

for all t ≥ T (δ).
If the first case obtains, then

∫ t

0

∫ 1

0

x(1− x)φ(x, τ) dx dτ ≤ 1
κ

ln
(
κ|R0 − ρ|

δ

)

for all t, which would prove our result.
On the other hand, in the second case, we have

d

dt

∫ 1

0

x(1− x)φ dx ≤ −
∫ 1

0

x(1− x)φ dx+ δ

∣∣∣∣
∫ 1

0

(2x− 1)x(1− x)φ dx
∣∣∣∣

for all t ≥ T (δ). Then, because φ ≥ 0,

d

dt

∫ 1

0

x(1− x)φ dx ≤ −(1− δ)
∫ 1

0

x(1− x)φ dx.

Solving the differential inequality implies
∫ 1

0

x(1− x)φ(x, t) dx ≤
(∫ 1

0

x(1− x)φ(x, T (δ)) dx
)
e−(1−δ)t

for all t ≥ T (δ). Because φ ∈ C([0, T (δ) + 1), B1), this is sufficient to imply our
result. ¥.
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Corollary 25 Let φ be the solution of Theorem 1 under the assumptions (51). Suppose
that there is a constant 0 < δ < 1 so that

|R0 − ρ| ≤ δ/κ.

Then, for any t > 0
∫ 1

0

x(1− x)φ(x, t) dx ≤
(∫ 1

0

x(1− x)φ0(x) dx
)
e−(1−δ)t.

Proof: Because φ ≥ 0, our hypotheses are sufficient to guarantee that the second
case of the previous proof obtains, with T (δ) = 0. ¥

Corollary 26 Let φ be the solution of Theorem 1 under the assumptions (51). Suppose
that there is a constant 0 < δ < 1 so that

|R0 − ρ| ≤ δ/κ.

Then, for any t > 0

|R(t)− ρ|

≥ |R0 − ρ| exp
{

κ

1− δ

(∫ 1

0

x(1− x)φ0(x) dx
) (

e−(1−δ)t − 1
)}

.

Proof: From Proposition 23

R(t)− ρ = (R0 − ρ) exp
[∫ t

0

∫ 1

0

−κ x(1− x)φ(x, τ) dx dτ
]
.

Then, because
∫ 1

0

x(1− x)φ(x, t) dx ≤
(∫ 1

0

x(1− x)φ0(x) dx
)
e−(1−δ)t,

we have

|R(t)− ρ| ≥ |R0 − ρ| exp
[
−κ

(∫ 1

0

x(1− x)φ0(x) dx
) ∫ t

0

e−(1−δ)t dτ

]
.

Evaluating the inner integral gives us the result. ¥
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[7] L. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19,
American Mathematical Society, Providence, RI, 1998.

[8] W.J. Ewens, Mathematical population genetics, Springer, Berlin, 1979.

[9] A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Degenerate second
order differential operators generating analytic semigroups in Lp andW 1,p, Math.
Nachrichten 238 (2002), 78–102.

[10] R. Ghez, Diffusion phenomena, Kluwer, New York, 2001.

[11] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second or-
der, Springer-Verlag, New York, 1984.

[12] W. G. Hill and J. Rasbash, Models of long term artificial selection in finite popu-
lation, Genet. Res., Camb. 48 (1986), 41–50.

[13] A. V. Ivanov, boundary-value problem for degenerate second-order linear
parabolic equations, in O. A. Ladyzhenskaya, ed., Boundary value problems of
mathematical physics and related aspects of function theory: part IV, Consultants
Bureau, New York, 1971, 22–43.

[14] M. Kimura, Diffusion models in population genetics, J. Applied Probability 1
(1964), 177–232.

[15] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’ceva, Linear and quasi-
linear equations of parabolic type, Trans. AMS, vol. 23, American Mathematical
Society, Providence, RI, 1968.

[16] J. R. Miller, M. C. Pugh, and M. B. Hamilton, A finite locus effect diffusion model
for the evolution of a quantitative trait, in review.

40



[17] O. A. Oleinik and E. V. Radkevic, Second order equations with nonnegative char-
acteristic form, American Mathematical Society, Providence, 1973.

[18] W. Paul and J. Baschnagel, Stochastic processes: from physics to finance,
Springer-Verlag, Berlin, 1990.

[19] T. Shiga, Existence and uniqueness of solutions for a class of non-linear diffusion
equations, J. Math. Kyoto Univ. 27 (1987), 195–215.

[20] N. Shimakura, Existence and uniqueness of solutions for a diffusion model of
intergroup selection, J. Math. Kyoto Univ. 25 (1985), 775–788.

41


